
JOURNAL OF MATERIALS SCIENCE 28 (1993) 138-144 

High-cycle fatigue characterization of titanium 
5AI-2.5Sn alloy 
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High-cycle fatigue behaviour of titanium 5AI-2.5Sn alloy at room temperature has been studied. 
S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on 
a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at 
different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear 
damage rule, double linear damage rule and damage curve approaches are applied, and results are 
compared with the experimental data. The agreement between prediction and experiment is found 
to be excellent. 

1. Introduct ion  
In our continuing quest for lighter materials in the 
aerospace industry, titanium alloys are gradually 
coming under stiff competition with metal-matrix and 
ceramic-matrix composites for high-temperature ap- 
plications. Despite the fact that conventional titanium 
alloys possess relatively lower specific strength than 
the contemporary high-temperature composite sys- 
tems, they are still considered to be a more reliable 
structural material than composites [1]. This is parti- 
cularly due to the reason that the science and techno- 
logy of metals are much more developed than those of 
composites. It is an established fact that titanium 
alloys are susceptible to fatigue as a consequence of 
fluctuations in applied loads. To find a proper expres- 
sion of this load and its relationship with time or 
frequency in order to determine the allowable stress 
level is one of the primary tasks of a designer. At the 
present state of the art, the life prediction activity 
includes this fundamental relationship as prerequisite 
to the application of all available damage rules. It has 
also been observed that the range of stress has 
a profound effect on the fatigue strength of metals 
[2 5], and hence dictates the application of the life 
prediction techniques. In this investigation, cumula- 
tive fatigue damage in titanium 5A1-2.5Sn alloy has 
been studied under different stress ratios varying from 
0 to 0.9, and S - N  curve characterization are per- 
formed at each stress ratio. 

Ever since Palmgren [6] and Miner [7] suggested 
what is known today as the "linear damage rule" 
(LDR), continued efforts were under way to predict 
fatigue behaviour more accurately with a complex 
loading history [8-12]. Although linear damage is 
simple, it does not conform with the fact that the order 
of loading significantly affects the summation of the 
cycle ratios to failure. The non-conformity is parti- 
cularly evident when high-stress loadings are applied 
first and low-stress ]oadings are subsequently applied 
until failure occurs. The sum of the observed cycle 
ratios is usually less than unity [13-15]. On the other 

hand, if the low stress is applied first, followed by the 
high stress, the sum of the cycle ratios can be greater 
than unity. Those were the early days of the study of 
the cumulative damage when these discrepancies were 
first observed. In order to remove this difficulty, 
Grover E16] separated the total fatigue process into 
two phases, namely crack initiation and crack propa- 
gation, beginning the qualitative concept of double 
linear damage. Following Grover's lead, Manson and 
Halford E17] developed an independent approach to 
quantify the "double linear damage rule" (DLDR) by 
providing an explicit formula for partitioning the total 
life into its initiation and propagation phases. Another 
approach to assess the damage accumulation is the 
damage curve concept (DC) introduced by Richart 
and Newmark E18] and Marco and Starkey E19] 
which plots the accumulation of "damage" as a func- 
tion of cycle ratio for various life values. In this re- 
search all three approaches, namely LDR, DLDR and 
DC, are considered for prediction of fatigue life under 
both two- and three-stress level loadings for stress 
ratios of R = 0 and 0.5. Experimentally found values 
are then compared with the predicted values. 

A flat subsized specimen (shown in Fig. 1) has been 
used in this study in place of a standard ASTM speci- 
men. Determination of stress and strain distribution 
as well as the locations of the maximum stress and 
strain in the specimen were necessary to validate the 
fatigue data. This is primarily due to the fact that the 
clamping loads and the specimen-end conditions had 
considerable bearings on the stress distribution over 
the whole specimen, as reported earlier [20]. A rigor- 
ous non-linear large-displacement finite-element 
analysis has been performed in the current research. 
However, the finite-element analyses are excluded 
from this paper. 

2. Life prediction techniques 
2.1. Linear damage rule 
Palmgren-Miner cycle ratio summation theory is the 
simplest and the oldest of all the prediction tools used 
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in cumulative fatigue damage [18, 19, 21]. Mathemat- 
ically this rule is stated as 

where n is the number of cycle of stress cy applied to 
the specimen and N is the life corresponding to ey. The 
problem with this technique, as stated before, is that it 
does not take into account the order of loading. Dur- 
ing the 'early Clays of cumulative fatigue analysis, this 
discrepancy was recognized and attempts were made 
to establish an "effective crack growth" Equation [ 17]. 

2.2. D a m a g e  cu rve  c o n c e p t  
The growth of a single dominant crack that eventually 
leads to specimen failure involves several complicated 
processes at its early stages. These processes include 
dislocation agglomeration, sub-cell formation and the 
formation of multiple microscopic cracks that inde- 
pendently grow until they link and form the dominant 
crack. To account for these early processes, a model 
for damage accumulation was developed in empirical 
form to track damage as loading is changed [17]. This 
approach is referred to as the damage curve concept. 
Cumulative fatigue damage analysis through the use 
of damage curves has been used by a number of 
investigators [18, 19]. The DC concept is that damage 
accumulation proceeds along the curve associated 
with the life level at which a cycle ratio is applied. If 
K loadings are applied, the equation for DC analysis 
can be expressed as [17] 

\tL\N,) ~J 
F/k 1 "~(Nk+~,'Nk) ~ 

+ " ' ' +  N k ~ )  + nk/Nk = 1 (2) 

The subscripts 1, 2, 3 . . . . .  k -  1, k are the sequence 
numbers of the loadings as they occur. For two stress 
level loading Equation 2 reduces to 

nl k} I~''''N~)~ n2 = 1 (3) + 

and for three stress level loading we can proceed in the 
same manner, so that 

E + + , ,4, 

A plot of Equation 3 results in a smooth continuous 
curve that passes through (0, l) and (1, 0) at the ex- 
tremities. Using this as a basis, Manson and Halford 
[17] replaced the continuous curve by two straight 
lines in order to establish an effective linear damage 
rule approximation. The concept of two straight lines 
and their point of intersection (knee point or 
transition point) eventually led to the formulation of 
the DLDR [15]. 

2.3. Double linear damage rule 
The concept of the DLDR originated from the pro- 
position of two phases of the physical processes in the 

total fatigue life. These two phases, namely phase 
I and phase II, often refer to one of crack initiation 
and the other of crack propagation, respectively, in the 
fatigue process. However, these are not necessarily the 
physical processes of crack initiation and propagation 
[15]. For the crack initiation phase 

where n = number of cycles applied at a particular 
stress level and No = cyclic life to initiate an effective 
crack at a particular stress level. For  the crack propa- 
gation phase 

where (AN)f = cyclic life to propagate a crack from 
phase I to failure at a particular stress level. 

Application of Equations 5 and 6 requires that the 
coordinates of the knee point, separating the two 
phases, must be known. Usually two-stress level tests 
are conducted to determine this point. In order to 
replace the experimental determination of knee point, 
Manson and Halford [ 17] have established the follow- 
ing general analytical expressions for knee point 
coordinates: For  high-low (i.e. N1 < N2)  stress level, 

(nl/N1)kne~ = 0.35(NI/N2) ~ 
(7) 

(n2/N2)kn~e = 0.65(N1/N2) ~ 

For low-high (i.e. N2 < N1) stress level 

( r t l / N 1 ) u p p e r  knee = l -- 0.65(N~/N2) -~ 
( 8 )  

( n 2 / N 2 ) u . ~ e ,  knee  = 1 - -  0.35(N,/N2) -~ 

where nl and rl 2 are cycle numbers applied at life levels 
N~ and N2,  respectively. Once the knee point is cal- 
culated the two straight lines can be defined passing 
through (1, 0) and the knee point, and (0, l) and the 
knee point in the nl /Nl  and n2/N2 plane. Analytical 
expressions for the two straight lines can, therefore, be 
found in terms of n~/N~ and nz /N  2. In the current 
investigation, we have used Equations 7 and 8 to 
determine the knee point and then derived an equa- 
tion for each of the two segments of the DLDR. Later 
we applied the cycle ratio, n~/N~, to decide which 
segment of the DLDR is to be used for estimation of 
n 2. Values of n: estimated in this manner have been 
compared with the experimental data. This has been 
performed for two-stress level loadings only. 

For three-stress level loading, we have used two- 
stress level loading data to experimentally determine 
the knee-point coordinates which eventually gener- 
ated phase I and phase II curves of the fatigue process. 
This in turn produced the values of No and AN at the 
third stress level. Equations 5 and 6 were then used to 
determine the life at the third stress level, and results 
were compared with those determined experimentally. 

3. Experimental procedure 
3.1. Material and specimen preparation 
At an early stage of this study, fatigue tests were 
conducted with loads calculated on the basis of the 
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Figure 1 Flat subsized fatigue specimen (dimensions in mm). 

ultimate strength available in the literature. It was 
observed that the number of cycles, even at 95% of the 
strength, was unexpectedly high. Two specimens were 
then tested to tensile failure to obtain the load-dis- 
placement curve and the ultimate strength. The 
average value was found to be 990 MPa (145 ksi). 
Throughout  the experiments this value was used as 
the ultimate strength, and the load-displacement 
curves were used in a later finite-element study. 

As mentioned earlier, a flat subsized specimen was 
used in this study. The specimen dimension are 
shown in Fig. 1. The specimens were prepared in a 
numerically controlled machine from billets of 
size 50.8 mm x 19 mm x 3.t75 mm (2.0 in. x 0.75 in. x 
0.125 in.). After machining, the specimens were heat- 
treated through a previously tested annealing cycle. 
Specimens were first heated up to 760~ (1400~ 
held at that temperature for 60 rain and again heated 
to a temperature of 871~ (1600~ and held at 
that temperature for 10 min. Finally specimens were 
cooled in air. The oxidized layer, tool marks etc. 
were removed by polishing the specimens with 
180-1200grit silicon carbide papers. The polished 
specimens were then viewed under a microscope for 
surface irregularities. 

3.2 .  Fat igue  t e s t s  
Fatigue tests were performed in a direct tension-com- 
pression fatigue machine (Fatigue Dynamics model 
DS-6000 HLM). The machine is equipped with a hy- 
draulic load maintainer and the preload is adjusted 
continually without affecting the cycle load. The test 
frequency was maintained at 600 cycles min-  1 for all 
tests. Stress ratios of R = 0, 0.5 and 0.9 were used. 
A clamped specimen is shown in Fig. 2. During regu- 
lar tests, the clamping load on the specimen was main- 
tained the same for each specimen by using a torque 
wrench. 
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Figure 2 Clamped specimen. 

4.  R e s u l t s  a n d  d i s c u s s i o n  
S N curve data for titanium 5A1-2.5Sn were gener- 
ated for stress ratios of R = 0, 0.5 and 0.9. Three S - N  

diagrams for these stress ratios are shown in semi-log 
scale in Fig. 3. It is obvious from Fig. 3 that in the 
high-cycle range for the same stress level the fatigue 
life is significantly higher with a higher stress ratio. 
Conversely, for the same fatigue life in the high-cycle 
range, fatigue strength decreases with decreasing stress 
ratio. For example, for a life of 10 6, fatigue strengths at 
R = 0,0.5, and 0.9 are 551 MPa (80 ksi), 800 MPa 
(116 ksi) and 951 MPa (138 ksi), respectively. In terms 
of the strength of the specimen material, this translates 
to 55, 80 and 95% of the ultimate strength. This is due 
to the fact that with a higher R value the load fluc- 
tuations tilt more towards monotonic loading which 
impedes dislocation and sub-cell formation in the 
fatigue process. It can be observed from the R = 0.9 
curve that the stress level at which it reached the 
fatigue limit is very high, approximately 90% of the 
ultimate strength (Su). The stress level for this R value 
in the 20000 cycle range is about 1050 MPa (152 ksi), 
which is in fact slightly higher than Su. It is difficult to 
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Figure 3 S N diagram for different stress ratios: R = (�9 0, (A) 0.5, 
(*) 0.9. 

visualize this manifesta t ion without  further investiga- 

tions. The finite-element analyses have shown that the 
specimen in the initial c lamping stage is under  com- 
pressive stress except in a small area near  the gauge 

section. Dur ing  tensile tensile loading, we believe that  
part  of the applied load is utilized in overcoming this 

initial compression without  actually affecting the 
gauge section. However, it is obvious that  a l though 
the specimen was loaded beyond its yield point,  the 

subsequent  fatigue process did not  immediately lead 
to the growth of any d o m i n a n t  crack causing the 
specimen to fail. It is believed that some micro-resid- 

ual stresses remained in the specimen even after 

anneal ing.  Since the specimen was subjected to ten- 

s ion - t ens ion  fatigue, residual compressive stresses 

were developed at the tips of the microcracks. These 

were formed at a very early stage of the fatigue process 

which temporar i ly  arrested the crack propagat ion.  
The diverging nature  of the three curves in the high- 
cycle range also shows that, the lower the cycle range, 
the lesser is the difference in fatigue strengths between 

the different stress ratios. It can further be noticed that 
the curves for three stress ratios appear  to be conver- 

ging at some point  in the low-cycle region which can 
be visualized as a point  about  which curves of all stress 

ratios will rotate. Fur ther  tests are necessary to pursue 
this ro ta t ion  concept of convergence. 

Two stress-level tests both in h igh- low and 

low-high sequences were conducted for stress ratios of 
0 and 0.5. Results obta ined  from these tests were 
compared  with those predicted by LDR, D L D R  and 

DC approaches,  and are shown in Tables I to IV. The 
graphical  representat ion of these approaches along 
with the experimental  data  are shown in Figs 4 to 7. 

Sample calculat ions for one test in each of three tables 
are shown in the Appendix. In Tables I to IV, N1 and 

N2 are the lives at stress level cyl and cy2, respectively, 
and  nl is the applied n u m b e r  of cycles at ~1. n ;  is the 

second-stage cycle number ,  either obta ined experi- 
mental ly or predicted by the theoretical approaches at 

stress level ~2. It is evident from the tables that D L D R  
predictions are closest to the experimental  values. 

The DC approach is better than the LDR except in 
low high sequence loading with R - - 0 . 5  (Table IV). 
F rom the tables it is observed that the LDR overes- 

t imates n2 at both stress ratios in h igh- low sequences 

TAB L E I Comparison of experimental data with DLDR, DC and LDR at R = 0 in high-low sequence under two-stress level loading a 

Test First stage na Second stage n2 Ratio 
No. (N ~ = 29 200) (N2 = 46 550) n2(theor.)/n2(exp.) 

DLDR DC LDR Exp. DLDR DC LDR 

1 25 000 5865 5874 6700 4800 1.22 1.22 1.40 
2 22 000 9775 9887 l 1 482 9900 0.99 !.00 1.16 
3 19 000 13 685 13 993 16264 14 150 0.97 0.99 1.15 
4 12 000 23 070 24 340 27 422 24 500 0.94 0.99 1.12 
5 8000 29 519 30848 33 798 31 600 0.93 0.98 1.07 

Average 1.01 1.04 1.18 

cy 1 = 800 MPa (116 ksi), c~ z = 700 MPa (101.5 ksi). 

TABLE II Comparison of experimental data with DLDR, DC and LDR at R = 0 in low-high sequence under two-stress level loading" 

Test First stage n~ Second stage n2 Ratio 
No. (N 1 = 46 550) (N2 = 29 200) n2 (theor.)/n2(exp.) 

DLDR DC LDR Exp. DLDR DC LDR 

1 38000 6602 
2 35000 8687 
3 30000 12 509 
4 20000 19806 
5 10000 24 674 

Average 

6548 5374 7550 0.87 0.87 0.71 
8554 7225 9600 0.91 0.89 0.75 

12 145 10 390 11 100 1.13 1.09 0.94 
18 639 16 660 18 000 1.10 1.04 0.93 
24 747 22 930 25 000 0.99 0.99 0.92 

1.00 0.98 0.85 

a ~ = 700 MPa (101.5 ksi), ~2 = 800 MPa (116 ksi). 
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T A B L E  I |1 Comparison of experimental data with DLDR, DC and LDR at R = 0.5 in high-low :sequence under two-stress level loading ~ 

Tes~ }qrs~ sttage n~ Second s~,age n2 Ratio 
No. i(Na = 705251 IN2 = 201800) n2(theor.)/na{exp.) 

DLDR DC LDR Exp. DLDR DC LDR 

1 6 5 ~ 0  10695 10 526 t5 8110 19 500 0.55 0.54 0.81 
2 57 Oil0 2"6 637 26 332 38 700 26 300 t .01 1.00 1.47 
3 ~, 0tlY3(0 40 218 40 799 58 730 41466 0.97 0.98 1.42 
4 4r 59 ~854 62 744 :87 344 70 200 0.85 0.89 1.24 
5 20g00 9~ 983 t 13 593 144 572 t07 400 0.92 1.06 1.35 
6 15 000 155 790 128 778 158 879 139 000 1.12 0.93 1.14 
7 5000 175 263 166 308 187 493 170 900 t.03 0.97 1.10 

Average 0.92 0.91 1.22 

" (~] = 900 MPa (130.5 ksi), c% = 800 MPa (116 ksi). 

T A B L E IV Comparison of experimental data with DLDR, DC and LDR at R = 0.5 in low high sequence under two-stress level loading a 

Test First stage n) Second stage n2 Ratio 
No. (N1 = 201 800) (N 2 = 70525) na(theor.)/nz(exp.) 

DLDR DC LDR Exp. DLDR DC LDR 

1 140000 31 524 30114 21 595 21 700 1.45 1.39 1.00 
2 110 000 46 828 42 534 32 080 44 600 1.05 0.95 0.72 
3 90 000 53 528 49 904 39 070 46 200 1.16 1.08 0.85 
4 40000 62 978 64 526 56 545 62100 1.01 1.04 0.91 
5 30 000 64 847 66 654 60 040 63 200 1.02 1.05 0.95 
6 20 000 66 751 68 437 63 535 56 300 1.19 1.22 1.13 

Average 1.15 1.12 0.93 

a ~1 =o800 MPa (116 ksi), cy 2 = 900 MPa (130.5 ksi). 
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Figure 4 Comparison of (�9 experimental data with DLDR, DC 
and LDR at R = 0 in high-low sequence under two-stress level 
loading (N1 = 29 200, N2 = 46 550). 
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Figure 5 Comparison of (O) experimental data with DLDR, DC 
and LDR at R = 0 in low-high sequence under two-stress level 
loading (N1 = 46 550, N2 = 29 200), 

and underestimates in the low-high sequences. How- 
ever, this is not the case with DLDR and DC ap- 
proaches. It is also found from the tables that at lower 
nt/N1, the correlation between the predicted and the 
experimental values are better, confirming the fact 
that all prediction curves converge at n~/N~ = O. 

The knee points obtained by the DLDR and by 
experiment are plotted in Figs 4 to 7. For  low-high 
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sequences at both stress ratios the knee point is at 
a much higher value of nl/Nt, indicating that the 
phase I life of the fatigue process is shorter in high-low 
stress sequence. This leads to the common under- 
standing that in the high-low sequence microcrack 
growth (phase I) initiates relatively earlier, but the 
dominant crack formation takes a longer time than in 
the low-high sequence. The difference in the knee- 
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Figure 6 Comparison of (�9 experimental data with DLDR, DC 
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Figure 7 Comparison of (�9 experimental data with DLDR, DC 
and LDR at R = 0.5 in low high sequence under two-stress level 

loading (N~ = 201 800, N2 = 70 525). 

point coordinates predicted by DLDR and those 
found from the experimental data are nominal, as is 
evident in all four figures. The DLDR shows the best 
correlation, followed by the DC in each case. 

931 ] 

(135 ksi) 
% 
ci_ 

896. 
(130 ksi) 

862 
(125 ksi 

827. 
(120 ksO 

< 

793. 
( l l5ksi) 

Originmt f(Itigue curve ~ Phase [ (N o ) 
Phase II (AN) 

758_ 
(110 kSi)lO 3 . . . . .  , , , ,  10~. . . . . . . . . . .  105 ' . . . . . . . .  106 ' . . . . . . . .  10 7 ' 

Number of cycles 
Figure 8 Phase I and Phase II lives of the fatigue, process, 

Three-stress level tests in high low middle se- 
quence have been performed at R -- 0,5 and the com- 
parison with the theoretical predi~i:ons are shown in 
Table V. The comparison in this: case is, for Nf which is 
the total number of cycles to failure, Here the DLDR 
and the LDR correlates very well with the experi- 
me;atal data. The DC approximation slightly under- 
estimates the experimental value. Sample calculations 
for one test are shown in the Appendix. It is to be 
noted here that DLDR computations are based on the 
experimental knee-point coordinates of Fig. 6. Phase 
I and phase II lives of the fatigue process from 
two-stress level curve are shown in Fig. 8. This was 
necessary to find values of No and AN for DLDR 
calculations. 

Conclusion 
The fatigue strength of titanium 5A1 2.5Sn at room 
temperature has been found to be a strong function of 
the stress ratio, especially in the high-cycle range. 
Considering the inherently large scatter of fatigue 
data, the correlation between the theoretical predic- 
tions and the experimental results is excellent. DLDR 
approximations have been found to be closest to the 
experimental values in both two- and three-stress level 
loadings for all stress ratios. The practical significance 

TAB L E V Comparison of experimental data with DLDR, DC and LDR at R = 0.5 in high-low-middle sequence under three-stress level 

loading a 

Test 1st stage nl 2nd stage rl 2 3rd stage n3 Ratio 
No. (N~ = 70525) (N2 = 201 800) (N3 = 125 500) Nf(theor.)/Nf(exp.) b 

DLDR DC LDR Exp. DLDR DC LDR 

1 50000 15000 19307 19201 27233 15500 1.047 1.046 1.145 
2 40000 20000 30284 3l 500 41 917 29000 1.014 1.028 1.145 
3 30 000 30 000 37 860 41 290 53 463 49 300 0.895 0.927 1.038 
4 20 000 40 000 45 437 52 961 65 009 8 l 000 0.748 0.807 0.887 
5 10000 50000 70699 67895 76555 87 100 0.889 0.869 0.928 
6 5000 70000 73294 68273 73041 100300 0.846 0.817 0.845 

Average 0.907 0.916 0.998 

a cy I = 900 MPa (130.5 ksi), c~ 2 = 800 MPa (116 ksi), c~ 3 = 850 MPa (123.25 ksi). 
b Nf = (N1 q- N2 + N3). 

143 



of these findings is that  the fatigue life of various 
t i tanium alloys under  cumulat ive loading can be pre- 
dicted with reasonable accuracy from simple tests. 

Appendix 
A.1. Calculations for two-stress level 

toadings 
For  high low stress sequence, R = 0; N1 = 29200, 
N 2 = 46 550, nl = 25 000 and the corresponding stress 
levels are 0-~ = 800 M P a  (116 ksi) and 0-2 = 700 M P a  
(101.5 ksi). 

For  D L D R  with nl /N1  = 0.856, from the D L D R  
curve as shown in Fig. 4 we can find the equat ion of 
two straight lines as 

n2/N2 = 1 - 1.355(n~2~) (A1) 

n2/N2 = 0 . 8 7 4 ( 1 - - ~ )  (A2) 

Since n~/N1 = 0.856 we pick Equat ion  A2; therefore 
n2/N2 = 0.126, n 2 = 0.126 x 46550 = 5865. However,  
graphically as shown in Fig. 4, the value of n2/N2 can 
be found more  readily. 

For  DC using Equat ion  3, i.e. n2/N 2 = 1 -  
( n l / N t )  (N'/N2)~ we have n z / N  2 = 0.1262; therefore 
n2 = 0.1262 x 46 550 = 5874. 

For  L D R  using Equat ion  1, i.e. nz/N2 = 1 -  
(nl/N1),  we have n z / N  2 = 0.144; therefore, 
n 2 = 0.144 x 46 550 = 6703. 

A.2. Calculation for three-stress level 
Ioadings 

For  h igh- low-middle  stress sequence R = 0.5; 
N1 = 70525, N 2 = 201 800, N3 = 125 500, nl = 50000, 
/I 2 = 15 000 and the corresponding stress levels are 
~1 = 9 0 0 M P a  (130.5 ksi), 0- 2 = 8 0 0 M P a  ( l l6ks i )  
and cy3 = 851 M P a  (123.25 ksi). 

For  D L D R  from Fig. 6 we can find the experi- 
mental  knee point  (0.28, 0.532), i.e. No, 1/N~ = 0.28 
and A N z / N  2 = 0.532; therefore we have 

No, 1 = 0.28 x 7 0 5 2 5 =  19 747 

ANt  = N 1 - N o ,  1 = 7 0 5 2 5  - 1 9 7 4 7 = 5 0 7 7 8  

A N  2 = 0.532 x 201 800 = 107357 

No, 2 = N2 - AN1 = 2 0 1 8 0 0 -  1 0 7 3 5 7 = 9 4 4 4 3  

N o w  from (No, 1,0-1), (N0,2, Oz), (AN1,0-1) and 
( A N 2 ,  0-2) we can generate phase I and phase II curves 
parallel to the original fatigue curve. These curves 
are shown in Fig. 8. F r o m  Fig. 8 we find that, 
at ~3 = 8 5 0 M P a  (123.25ksi), No,3 = 52500 and 
A N  3 = 73000. Using Equat ion  5, nl /No,  1 = 
5 0 0 0 0 / 1 9 7 4 7 = 2 . 5 3 2 7 .  This indicates that phase 

I has already been completed. Therefore, the cycle 
number  left for phase II is n'~ = 5 0 0 0 0 -  
19747 = 30253. Applying Equat ion  6, (n '~/AN1)+ 
(nz/AN2) + (n3 /AN3)= 1 or (30253/50778)+  (15000/ 
107 357) + (n3/73 000) = 1; therefore n3 = 19 307. 

For  D C  using Equat ion  4, we have n3/N3 = 0.153, 
therefore n3 = 0.153 x 125 500 = 19201. 

For  L D R  using Equat ion  1, i.e. n3/N3 = 1 -  
(nl /N1)  --  (nz/N2) , we have n3/N3 = 0.217; therefore 
n 3 = 0.217 x 125500 = 27233. 
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